Tag Archives: App Service

Middleware in ASP .NET Core

By Shahed C on April 3, 2019

This is the thirteenth of a series of posts on ASP .NET Core in 2019. In this series, we’ll cover 26 topics over a span of 26 weeks from January through June 2019, titled A-Z of ASP .NET Core!

ASPNETCoreLogo-300x267 A – Z of ASP .NET Core!

In this Article:

M is for Middleware in ASP .NET Core

If you’ve been following my blog series (or if you’ve done any work with ASP .NET Core at all), you’ve already worked with the Middleware pipeline. When you create a new project using one of the built-in templates, your project is already supplied with a few calls to add/configure middleware services and then use them. This is accomplished by adding the calls to the Startup.cs configuration methods.

Blog-Diagram-Middleware-Pipeline

 

The above diagram illustrates the typical order of middleware layers in an ASP .NET Core web application. The order is very important, so it is necessary to understand the placement of each request delegate in the pipeline.

To follow along, take a look at the sample project on Github:

Web Middleware Sample: https://github.com/shahedc/AspNetCoreMiddlewareSample

How It Works

When an HTTP request comes in, the first request delegate handles that request. It can either pass the request down to the next in line or short-circuit the pipeline by preventing the request from propagating further. This is use very useful across multiple scenarios, e.g. serving static files without the need for authentication, handling exceptions before anything else, etc.

The returned response travels back in the reverse direction back through the pipeline. This allows each component to run code both times: when the request arrives and also when the response is on its way out.

Here’s what the Configure() method looks like, in a template-generated Startup.cs file:

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    if (env.IsDevelopment())
    {
        app.UseDeveloperExceptionPage();
        app.UseDatabaseErrorPage();
    }
    else
    {
        app.UseExceptionHandler("/Home/Error");
        app.UseHsts();
    }

    app.UseHttpsRedirection();
    app.UseStaticFiles();
    app.UseCookiePolicy();

    app.UseAuthentication();

    app.UseSession();

    app.UseMvc(routes =>
    {
        routes.MapRoute(
            name: "default",
            template: "{controller=Home}/{action=Index}/{id?}");
    });
}

I have added a call to UseSession()  to call the Session Middleware, as it wasn’t included in the template-generated project. I also enabled authentication and HTTPS when creating the template.

VS2017-Project-New

 

In order to configure the use of the Session middleware, I also had to add the following code in my ConfigureServices() method:

public void ConfigureServices(IServiceCollection services)
{
...
    services.AddDistributedMemoryCache();
    services.AddSession(options =>
    {
        options.IdleTimeout = TimeSpan.FromSeconds(10);
        options.Cookie.HttpOnly = true;
        options.Cookie.IsEssential = true;
    });

    services.AddMvc();

...

}

The calls to AddDistributedMemoryCache() and AddSession() ensure that we have enabled a (memory cache) backing store for the session and then prepared the Session middleware for use. In the Razor Pages version of Startup.cs, the Configure() method is a little simpler, as it doesn’t need to set up MVC routes for controllers in the call to useMvc().

Built-In Middleware

The information below explains how the built-in middleware works, and why the order is important. The UseXYZ() methods are merely extension methods that are prefixed with the word “Use” as a useful convention, making it easy to discover Middleware components when typing code. Keep this in mind mind when developing custom middleware.

Exception Handling:

  • UseDeveloperExceptionPage() & UseDatabaseErrorPage(): used in development to catch run-time exceptions
  • UseExceptionHandler(): used in production for run-time exceptions

Calling these methods first ensures that exceptions are caught in any of the middleware components that follow. For more information, check out the detailed post on Handling Errors in ASP .NET Core, earlier in this series.

HSTS & HTTPS Redirection:

  • UseHsts(): used in production to enable HSTS (HTTP Strict Transport Security Protocol) and enforce HTTPS.
  • UseHttpsRedirection(): forces HTTP calls to automatically redirect to equivalent HTTPS addresses.

Calling these methods next ensure that HTTPS can be enforced before resources are served from a web browser. For more information, check out the detailed post on Protocols in ASP .NET Core: HTTPS and HTTP/2.

Static Files:

  • UseStaticFiles(): used to enable static files, such as HTML, JavaScript, CSS and graphics files. Called early on to avoid the need for authentication, session or MVC middleware.

Calling this before authentication ensures that static files can be served quickly without unnecessarily triggering authentication middleware. For more information, check out the detailed post on JavaScript, CSS, HTML & Other Static Files in ASP .NET Core.

Cookie Policy:

  • UseCookiePolicy(): used to enforce cookie policy and display GDPR-friendly messaging

Calling this before the next set of middleware ensures that the calls that follow can make use of cookies if consented. For more information, check out the detailed post on Cookies and Consent in ASP .NET Core.

Authentication, Authorization & Sessions:

  • UseAuthentication(): used to enable authentication and then subsequently allow authorization.
  • UseSession(): manually added to the Startup file to enable the Session middleware.

Calling these after cookie authentication (but before the MVC middleware) ensures that cookies can be issued as necessary and that the user can be authenticated before the MVC engine kicks in. For more information, check out the detailed post on Authentication & Authorization in ASP .NET Core.

MVC & Routing:

  • UseMvc(): enables the use of MVC in your web application, with the ability to customize routes for your MVC application and set other options.
  • routes.MapRoute(): set the default route and any custom routes when using MVC.

To create your own custom middleware, check out the official docs at:

Branching out with Run, Map & Use

The so-called “request delegates” are made possible with the implementation of three types of extension methods:

  • Run: enables short-circuiting with a terminal middleware delegate
  • Map: allows branching of the pipeline path
  • Use: call the next desired middleware delegate

If you’ve tried out the absolute basic example of an ASP .NET Core application (generated from the Empty template), you may have seen the following syntax in your Startup.cs file. Here, the app.Run() method terminates the pipeline, so you wouldn’t add any additional middleware calls after it.

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
{
    ...
    app.Run(async (context) =>
    {
        await context.Response.WriteAsync("Hello World!");
    });
}

The call to app.Use() can be used to trigger the next middleware component with a call to next.Invoke() as shown below:

public void Configure(IApplicationBuilder app)
{
    app.Use(async (context, next) =>
    {
        // ...
        await next.Invoke();
        // ...
    });

    app.Run(...);
}

If there is no call to next.Invoke(), then it essentially short-circuits the middleware pipeline. Finally, there is the Map() method, which creates separate forked paths/branches for your middleware pipeline and multiple terminating ends. The code snippet below shows the contents of a Startup.cs file with mapped branches:

// first branch handler
private static void HandleBranch1(IApplicationBuilder app)
{
    app.Run(async context =>
    {
        await context.Response.WriteAsync("Branch 1.");
    });
}

// second branch handler
private static void HandleBranch2(IApplicationBuilder app)
{
    app.Run(async context =>
    {
        await context.Response.WriteAsync("Branch 2.");
    });
}

public void Configure(IApplicationBuilder app)
{
    app.Map("/mappedBranch1", HandleBranch1);

    app.Map("/mappedBranch2", HandleBranch2);

    // default terminating Run() method
    app.Run(async context =>
    {
        await context.Response.WriteAsync("Terminating Run() method.");
    });
}

In the Configure() method, each call to app.Map() establishes a separate branch that can be triggered with the appropriate relative path. Each handler method then contains its own terminating map.Run() method.

For example:

  • accessing /mappedBranch1 in an HTTP request will call HandleBranch1()
  • accessing /mappedBranch2 in an HTTP request will call HandleBranch2()
  • accessing the / root of the web application will call the default terminating Run() method
  • specifying an invalid path will also call the default Run() method

The screenshots below illustrate the results of the above scenarios:

 

Scenario 1: https://localhost:44391/mappedBranch1

Branch-1

Scenario 2: https://localhost:44391/mappedBranch2

Branch-2

Scenario 3: https://localhost:44391/

Branch-Root

Scenario 4: https://localhost:44391/RandomTextESDRFTGYHJ

Branch-Random

 

References

Hope you enjoyed learning about Middleware in ASP.NET Core. Here is some feedback I received via Twitter: “Learned so [much] about #ASPNetCore  middleware from this article. The templates should have comments in them with this stuff!”

 

Key Vault for ASP .NET Core Web Apps

By Shahed C on March 18, 2019

This is the eleventh of a series of posts on ASP .NET Core in 2019. In this series, we’ll cover 26 topics over a span of 26 weeks from January through June 2019, titled A-Z of ASP .NET Core!

ASPNETCoreLogo-300x267 A – Z of ASP .NET Core!

In this Article:

K is for Key Vault for ASP .NET Core Web Apps

In my 2018 blog series, we covered the use of User Secrets for your ASP .NET Core web application projects. This is useful for storing secret values locally during development. However, we need a cloud-based scalable solution when deploying web apps to Azure. This article will cover Azure Key Vault as a way to store and retrieve sensitive information in Azure and access them in your web application.

You may download the following sample project to follow along with Visual Studio. You may need to apply migrations if you wish to use the optional authentication features with a data store in the sample app.

Web Key Vault Sample: https://github.com/shahedc/AspNetCoreKeyVaultSample

You will also need an Azure subscription to create and use your own Key Vault and App Service.

Blog-Diagram-KeyVault

Setting up Key Vault in Azure

Before you can use Key Vault in the cloud, you will have to set it up in Azure for your use. This can be done in various ways:

  • Azure Portal: log in to the Azure Portal in a web browser.
  • Azure CLI: use Azure CLI commands on your development machine.
  • Visual Studio: use the VS IDE on your development machine.

To use the Azure Portal: create a new resource, search for Key Vault, click Create and then follow the onscreen instructions. Enter/select values for the following for the key vault:

  • Name: alphanumeric, dashes allowed, cannot start with number
  • Subscription: select the desired Azure subscription
  • Resource Group: select a resource group or create a new one
  • Location: select the desired location
  • Pricing Tier: select the appropriate pricing tier (Standard, Premium)
  • Access policies: select/create one or more access policies with permissions
  • Virtual Network Access: select all (or specific) networks to allow access

KeyVault-Create-Portal

If you need help with the Azure Portal, check out the official docs at:

To use the Azure CLI: authenticate yourself, run the appropriate commands to create a key vault, add keys/secrets/certificates and then authorize an application to use your keys/secrets.

To create a new key vault, run “az keyvault create” followed by a name, resource group and location, e.g.

az keyvault create --name "MyKeyVault" --resource-group "MyRG" --location "East US"

To add a new secret, run “az keyvault secret set“, followed by the vault name, a secret name and the secret’s value, e.g.

az keyvault secret set --vault-name "MyKeyVault" --name "MySecretName" --value "MySecretValue"

If you need help with the Azure CLI, check out the official docs at:

To use Visual Studio, right-click your project in Solution Explorer, click Add | Connected Service, select “Secure Secrets with Azure Key Vault” and follow the onscreen instructions.

vs2017-add-connservice

If you need help with Visual Studio, check out the official docs at:

Once created, the Key Vault and its secret names (and values) can be browsed in the Azure Portal, as seen in the screenshots below:

Key Vault Details

Key Vault Details

Secret in Key Vault

Secret in Key Vault

NOTE: If you create a secret named “Category1–MySecret”, this syntax specifies a category “Category1” that contains a secret “MySecret.”

Retrieving Key Vault Secrets

Before you deploy your application to Azure, you can still access the Key Vault using Visual Studio during development. This is accomplished by using your Visual Studio sign-in identity. Even if you have multiple levels of configuration to retrieve a secret value, the app will use the config sources in the following order:

  • first, check the Key Vault.
  • if Key Vault not found, check secrets.json file
  • finally, check the appsettings.json file.

There are a few areas in your code you need to update, in order to use your Key Vault:

  1. Install the nuget packages AppAuthentication and KeyVault NuGet libraries.
    • Microsoft.Azure.Services.AppAuthentication
    • Microsoft.Azure.KeyVault
  2. Update Program.cs to configure your application to use Key Vault
  3. Inject an IConfiguration object into your controller (MVC) or page model (Razor Pages, shown below)
  4. Access specific secrets using the IConfiguration object, e.g. _configuration[“MySecret”]

Below is an example of Program.cs using the WebHostBuilder’s ConfigureAppConfiguration() method to configure Key Vault. The keyVaultEndpoint is the fully-qualified domain name of your Key Vault that you created in Azure.

...
using Microsoft.Azure.KeyVault;
using Microsoft.Azure.Services.AppAuthentication;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.Configuration.AzureKeyVault;
...
public static IWebHost BuildWebHost(string[] args) =>
   WebHost.CreateDefaultBuilder(args)
      .ConfigureAppConfiguration((ctx, builder) =>
      {
         var keyVaultEndpoint = GetKeyVaultEndpoint();
         if (!string.IsNullOrEmpty(keyVaultEndpoint))
         {
            var azureServiceTokenProvider = new AzureServiceTokenProvider();
            var keyVaultClient = new KeyVaultClient(
               new KeyVaultClient.AuthenticationCallback(
                  azureServiceTokenProvider.KeyVaultTokenCallback));
               builder.AddAzureKeyVault(
                  keyVaultEndpoint, keyVaultClient, new DefaultKeyVaultSecretManager());
         }
      }
   ).UseStartup<Startup>()
   .Build(); 

private static string GetKeyVaultEndpoint() => "https://<VAULT_NAME>.vault.azure.net/";

NOTE: Please note that the Web Host Builder in ASP .NET Core 2.x will be replaced by the Generic Host Builder in .NET Core 3.0.

Below is an example of of a Page Model for a Razor Page, e.g. SecretPage.cshtml.cs in the sample app

...
using Microsoft.Extensions.Configuration;
public class SecretPageModel : PageModel
{
   public IConfiguration _configuration { get; set; }
   public string Message1 { get; set; }
   public string Message2 { get; set; }
   public string Message3 { get; set; } 

   public SecretPageModel(IConfiguration configuration)
   {
      _configuration = configuration;
   }

   public void OnGet()
   {
      Message1 = "My 1st key val = " + _configuration["MyKeyVaultSecret"];
      Message2 = "My 2nd key val = " + _configuration["AnotherVaultSecret"];
      Message3 = "My 3nd key val ? " + _configuration["NonExistentSecret"];
   }
}

In the above code, the configuration object is injected into the Page Model’s SecretPageModel()The values are retrieved from the collection in the OnGet() method and assigned to string properties. In the code below, the string properties are accessed from the model class in the corresponding Razor Page, SecretPage.cshtml.

@page
@model KeyVaultSample.Pages.SecretPageModel
...
<p>
 @Model.Message1
</p> 

<p>
 @Model.Message2
</p> 

<p>
 @Model.Message3
</p>

Finally, viewing the page allows you to navigate to the Secret Page to view the secret values. Note that I’ve only created 2 secret values before deploying this instance, so the 3rd value remains blank (but without generating any errors).

KeyVault-Browser-Values

Managed Service Identity

There are multiple ways to deploy your ASP .NET Core web app to Azure, including Visual Studio, Azure CLI or a CI/CD pipeline integrated with your source control system. If you need help deploying to Azure App Service, check out the following article from this blog series:

You can set up your Managed Service Identity in various ways:

  • Azure Portal: log in to the Azure Portal and add your app
  • Azure CLI: use Azure CLI commands to set up MSI
  • Visual Studio: use the VS IDE while publishing

Once you’ve created your App Service (even before deploying your Web App to it), you can use the Azure Portal to add your app using Managed Service Identity. In the screenshots below, I’ve added my sample app in addition to my own user access.

  • In the Access Policies section of the Key Vault, you may add one or more access policies.
  • In the Identity section of the App Service, you may update the System-Assigned setting to “On” and make a note of the Object ID, which is defined as a “Unique identifier assigned to this resource, when it’s registered with Azure Active Directory
KeyVault-AccessPolicies

KeyVault-AccessPolicies

AppService-Identity

AppService-Identity

To use the Azure CLI to authorize an application to access (or “get”) a key vault, run “az keyvault set-policy“, followed by the vault name, the App ID and specific permissions. This is equivalent to enabling the Managed Service Identity for your Web App in the Azure Portal.

az keyvault set-policy --name "MyKeyVault" --spn <APP_ID> --secret-permissions get

To use Visual Studio to use your key vault after deployment, take a look at the Publish screen when deploying via Visual Studio. You’ll notice that there is an option to “Add Key Vault” if it hasn’t been added yet. After you’ve added and enabled Key Vault for your application, the option will change to say “Configure” and “Manage Key Vault”.

KeyVault-BeforeAdd

Publish (before adding Key Vault)

KeyVault-Publish

Publish (Manage Key Vault after adding it)

After adding via Visual Studio during the Publish process, your Publish Profile (profile – Web Deploy.pubxml) and Launch Settings profiles (launchSettings.json) should contain the fully qualified domain name for your Key Vault in Azure. You should not include these files in your source control system.

References

 

 

EF Core Relationships in ASP .NET Core

By Shahed C on February 4, 2019

This is the fifth of a new series of posts on ASP .NET Core for 2019. In this series, we’ll cover 26 topics over a span of 26 weeks from January through June 2019, titled A-Z of ASP .NET Core!

ASPNETCoreLogo-300x267 A – Z of ASP .NET Core!

In this Article:

E is for EF Core Relationships

In my 2018 series, we covered EF Core Migrations to explain how to add, remove and apply Entity Framework Core Migrations in an ASP .NET Core web application project. In this article, we’ll continue to look at the NetLearner project, to identify entities represented by C# model classes and the relationships between them.

NOTE: Please note that NetLearner is a work in progress as of this writing, so its code is subject to change. The UI still needs work (and will be updated at a later date) but the current version has the following models with the relationships shown below:

NetLearner database diagram

NetLearner database diagram

Classes and Relationships

The heart of the application is the LearningResource class. This represents any online learning resource, such as a blog post, single video, podcast episode, ebook, etc that can be accessed with a unique URL.

public class LearningResource : InternetResource
{
    public List<LearningResourceItemList> LearningResourceItemLists
    {
        get; set;
    }
}

The abstract class InternetResource defines the common properties (e.g. Id, Name and Url) found in any Internet resource, and is also used by other classes ResourceRoot and RssFeed.

public abstract class InternetResource
{
    public int Id { get; set; }
    public string Name { get; set; }
    public string Url { get; set; }
}

The ResourceRoot class represents a root-level resource (e.g. a blog home or a podcast website) while the RssFeed class represents the RSS Feed for an online resource.

public class ResourceRoot: InternetResource
{
    public RssFeed RssFeed { get; set; }
    public List<LearningResource> LearningResources { get; set; }
}
public class RssFeed: InternetResource
{
    public int ResourceRootId { get; set; }
}

The ItemList class represents a logical container for learning resources in the system. It is literally a list of items, where the items are your learning resources.

public class ItemList
{
    public int Id { get; set; }
    public string Name { get; set; }
    public List<LearningResourceItemList> LearningResourceItemLists
    {
        get; set;
    }
}

At this point, you may have noticed both the LearningResource and ItemList classes contain a List<T> property of LearningResourceItemList. If you browse the database diagram, you will notice that this table appears as a connection between the two aforementioned tables, to establish a many-to-many relationship. (more on this later)

The following diagram shows an example of how the a LearningResource is a part of a list (which is a part of a ResourceCatalog), while each LearningResource also has a ResourceRoot.

NetLearner example

NetLearner example

One to One

Having looked through the above entities and relationships, we can see that each ResourceRoot has an RssFeed. This is an example of a 1-to-1 relationship. For example:

  • Resource Root = Wake Up and Code! blog site
  • Rss Feed = RSS Feed for blog site

In the two classes, we see the following code:

public class ResourceRoot: InternetResource
{
    public RssFeed RssFeed { get; set; }
    public List<LearningResource> LearningResources { get; set; }
}
public class RssFeed: InternetResource
{
    public int ResourceRootId { get; set; }
}

Each Resource Root has a corresponding Rss Feed, so the ResourceRoot class has a property for RssFeed. That’s pretty simple. But in the RssFeed class, you don’t need a property pointing back to the ResourceRoot. In fact, all you need is a ResourceRootId property. EF Core will ensure that ResourceRoot.Id points to RssFeed.ResourceRootId in the database.

One to One Relationships

One to One Relationships

If you’re wondering how these two classes got their Id, Name and Url fields, you may recall that they are both derived from a common abstract parent class (InternetResource) that define all this fields for reuse. But wait a second… why doesn’t this parent class appear in the database? That’s because we don’t need it in the database and have intentionally ommitted it from the list of DBSet<> definitions in the DB Context for the application, found in ApplicationDbContext.cs:

public class ApplicationDbContext : IdentityDbContext
{
...
    public DbSet<ItemList> ItemList { get; set; }
    public DbSet<LearningResource> LearningResource { get; set; }
    public DbSet<ResourceCatalog> ResourceCatalog { get; set; }
    public DbSet<ResourceRoot> ResourceRoot { get; set; }
    public DbSet<RssFeed> RssFeed { get; set; }
...
}

Another way of looking at the One-to-One relationship is to view the constraints of each database entity in the visuals below. Note that both tables have an Id field that is a Primary Key (inferred by EF Core) while the RssFeed table also has a Foreign Key for the ResourceRootId field used for the constraint in the relationship.

RssFeed table

RssFeed table

ResourceRoot Table

ResourceRoot Table

NetLearner-Db-ResourceRoot-RssFeed

1-to-1 Relationship: ResourceRoot.Id points to RssFeed.ResourceRootId

One to Many (Example 1)

Next, let’s take a look at the One-to-Many relationship for each ResourceCatalog that has zero or more ItemLists. For example:

  • Resource Catalog = ASP .NET Core Blogs
  • Item List = ASP .NET Core A-Z Blog Series

In the two classes, we see the following code:

public class ResourceCatalog
{
    public int Id { get; set; }
    public string Name { get; set; }
    public List<ItemList> ItemLists { get; set; }
}
public class ItemList
{
    public int Id { get; set; }
    public string Name { get; set; }
    public List<LearningResourceItemList> LearningResourceItemLists
    {
        get; set;
    }
}

Each Resource Catalog has zero or more Item Lists, so the ResourceCatalog class has a List<T> property for ItemLists. This is even simpler than the previously described 1-to-1 relationship. In the ItemList class, you don’t need a property pointing back to the ResourceCatalog.

One-to-Many Relationship

One-to-Many Relationship

Another way of looking at the One-to-Many relationship is to view the constraints of each database entity in the visuals below. Note that both tables have an Id field that is a Primary Key (once again, inferred by EF Core) while the ItemList table also has a Foreign Key for the ResourceCatalogId field used for the constraint in the relationship.

NetLearner-Db-ResourceCatalog-ItemList-Constraint

1-to-Many Relationship: ResourceCatalog.Id points to ItemList.ResourceCatalogId

One to Many (Example 2)

Let’s also take a look at another One-to-Many relationship, for each ResourceRoot that has zero or more LearningResources. For example:

  • Resource Root = Wake Up and Code! blog site
  • Learning Resource = Specific blog post on site

In the two classes, we see the following code:

public class ResourceRoot: InternetResource
{
    public RssFeed RssFeed { get; set; }
    public List<LearningResource> LearningResources { get; set; }
}
public class LearningResource : InternetResource
{
    public List<LearningResourceItemList> LearningResourceItemLists
    {
        get; set;
    }
}

Each Resource Root has zero or more Learning Resources, so the ResourceRoot class has a List<T> property for LearningResources. This is just as simple as the aforementioned 1-to-many relationship. In the LearningResource class, you don’t need a property pointing back to the ResourceRoot.

Relationship between ResourceRoot and LearningResource

ResourceRoot and LearningResource

Another way of looking at the One-to-Many relationship is to view the constraints of each database entity in the visuals below. Note that both tables have an Id field that is a Primary Key (inferred by EF Core, as you should know by now) while the LearningResource table also has a Foreign Key for the ResourceRootId field used for the constraint in the relationship.

1-to-Many Constraint

1-to-Many Constraint for ResourceRoot and LearningResource

Many to Many

Finally, let’s also take a look at a Many-to-Many relationship, for each ItemList and LearningResource, either of which can have many of the other. For example:

  • Item List = ASP .NET Core A-Z Blog Series
  • Learning Resource = Specific blog post on site

This relationship is a little more complicated than all of the above, as we will need a “join table” to connect the two tables in question. Not only that, we will have to describe the entity in the C# code with connections to both tables we would like to connect with this relationship.

If you’re wondering when EF Core will support this type of relationship without a join table, check out the following GitHub issue discussions:

Specifically, take a look at this comment: “Current plan for 3.0 is to implement skip-level navigation properties as a stretch goal. If property bags (#9914) also make it into 3.0, enabling a seamless experience for many-to-many could become easier.

In the two classes we would like to connect, we see the following code:

public class ItemList
{
    public int Id { get; set; }
    public string Name { get; set; }
    public List<LearningResourceItemList> LearningResourceItemLists
    {
        get; set;
    }
}
public class LearningResource : InternetResource
{
    public List<LearningResourceItemList> LearningResourceItemLists
    {
        get; set;
    }
}

Next, we have the LearningResourceItemList class as a “join entity” to connect the above:

public class LearningResourceItemList
{
    public int LearningResourceId { get; set; }
    public LearningResource LearningResource { get; set; }
    public int ItemListId { get; set; }
    public ItemList ItemList { get; set; }
}

This special class has the following properties:

  • LearningResourceId: integer value, pointing back to LearningResource.Id
  • LearningResource: optional “navigation” property, reference back to connected LearningResource entity
  • ItemListId: integer value, pointing back to ItemList.Id
  • ItemList:  optional “navigation” property, reference back to connected ItemList entity

To learn more about navigation properties, check out the official docs at:

Many-to-Many Relationship

Many-to-Many Relationship

Another way of looking at the Many-to-Many relationship is to view the constraints of each database entity in the visuals below. Note that the two connected tables both have an Id field that is a Primary Key (yes, inferred by EF Core!) while the LearningResourceItemList table has a Composite Key for the ItemListId and LearningResourceId fields used for the constraints in the relationship.

The composite key is described in the ApplicationDbContext class inside the OnModelCreating() method:

public class ApplicationDbContext : IdentityDbContext
{
    ...
    protected override void OnModelCreating(ModelBuilder modelBuilder)
    {
        modelBuilder.Entity<LearningResourceItemList>()
            .HasKey(r => new { r.LearningResourceId, r.ItemListId });
        base.OnModelCreating(modelBuilder);
    }
}

Here, the HasKey() method informs EF Core that the entity LearningResourceItemList has a composite key defined by both LearningResourceId and ItemListId.

References

For more information, check out the list of references below.

For detailed tutorials that include both Razor Pages and MVC, check out the official tutorials below:

 

 

Deploying ASP .NET Core to Azure App Service

By Shahed C on January 28, 2019

This is the fourth of a new series of posts on ASP .NET Core for 2019. In this series, we’ll cover 26 topics over a span of 26 weeks from January through June 2019, titled A-Z of ASP .NET Core!

ASPNETCoreLogo-300x267 A – Z of ASP .NET Core!

In this Article:

Before you begin, make sure you sign in to Azure, or create a new trial account first to follow along.

D is for Deploying to Azure App Service

In this article, we’ll explore several options for deploying an ASP .NET Core web app to Azure App Service in the cloud. From the infamous Right-Click-Publish to fully automated CI/CD, you’ll learn about the latest Deployment Center option in the Azure Portal for App Service for web apps.

NOTE: If you’re looking for information on deploying to Docker or Kubernetes, please check out the following docs instead:

 

Right-Click Publish (aka Friends Don’t Let Friends Right-Click Publish)

If you’ve made it this far, you may be thinking one of the following:
a. “Hey, this is how I deploy my web apps right now!”
or
b. “Hey wait a minute, I’ve heard that you should never do this!”

Well, there is a time and place for right-click publish. There have been many debates on this, so I won’t go into the details, but here are some resources for you to see what others are saying:

Tweet from Geoffrey Huntley: https://twitter.com/GeoffreyHuntley/status/994345821276536832

So, what’s a web developer to do? To quote from the aforementioned MSDN article, “Continuing with the theme of prototyping and experimenting, right click publish is the perfect way for existing Visual Studio customers to evaluate Azure App Service (PAAS). By following the right click publish flow you get the opportunity to provision new instances in Azure and publish your application to them without leaving Visual Studio:”

In other words, you can use this approach for a quick test or demo, as shown in the screenshots below for Visual Studio.

  1. Right-click your ASP .NET Core web app project in Solution Explorer and select Publish.
  2. Click the Start button on the screen that appears and follow the onscreen instructions.
  3. Ensure that you’re logged in to the correct Azure subscription account you want to publish to.
VS2017-RightClick-Publish

Right-click Publish your project from Solution Explorer

Follow the onscreen instructions

Follow the onscreen instructions

Continue reading